A Functorial Approach to the Infinitesimal Theory of Groupoids
نویسنده
چکیده
Lie algebroids are by no means natural as an infinitesimal counterpart of groupoids. In this paper we propose a functorial construction called Nishimura algebroids for an infinitesimal counterpart of groupoids. Nishimura algebroids, intended for differential geometry, are of the same vein as Lawvere’s functorial notion of algebraic theory and Ehresmann’s functorial notion of theory called sketches. We study totally intransitive Nishimura algebroids in detail. Finally we show that Nishimura algebroids naturally give rise to Lie algebroids.
منابع مشابه
Polish Groupoids and Functorial Complexity
We introduce and study the notion of functorial Borel complexity for Polish groupoids. Such a notion aims at measuring the complexity of classifying the objects of a category in a constructive and functorial way. In the particular case of principal groupoids such a notion coincide with the usual Borel complexity of equivalence relations. Our main result is that on one hand for Polish groupoids ...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملA New Approach to Nonstandard Analysis
In this paper, we propose a new approach to nonstandard analysis without using the ultrafilters. This method is very simple in practice. Moreover, we construct explicitly the total order relation in the new field of the infinitesimal numbers. To illustrate the importance of this work, we suggest comparing a few applications of this approach with the former methods.
متن کاملActions of vector groupoids
In this work we deal with actions of vector groupoid which is a new concept in the literature. After we give the definition of the action of a vector groupoid on a vector space, we obtain some results related to actions of vector groupoids. We also apply some characterizations of the category and groupoid theory to vector groupoids. As the second part of the work, we define the notion...
متن کامل